Engineering stochasticity in gene expressionw

نویسندگان

  • Jeffrey J. Tabor
  • Travis S. Bayer
  • Zachary B. Simpson
  • Matthew Levy
  • Andrew D. Ellington
چکیده

Stochastic fluctuations (noise) in gene expression can cause members of otherwise genetically identical populations to display drastically different phenotypes. An understanding of the sources of noise and the strategies cells employ to function reliably despite noise is proving to be increasingly important in describing the behavior of natural organisms and will be essential for the engineering of synthetic biological systems. Here we describe the design of synthetic constructs, termed ribosome competing RNAs (rcRNAs), as a means to rationally perturb noise in cellular gene expression. We find that noise in gene expression increases in a manner proportional to the ability of an rcRNA to compete for the cellular ribosome pool. We then demonstrate that operons significantly buffer noise between coexpressed genes in a natural cellular background and can even reduce the level of rcRNA enhanced noise. These results demonstrate that synthetic genetic constructs can significantly affect the noise profile of a living cell and, importantly, that operons are a facile genetic strategy for buffering against noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BIOCOMP’11 Stability Analysis of Hybrid Stochastic Gene Regulatory Networks

Gene regulatory networks (GRNs) represent complex nonlinear coupled dynamical systems that models gene functions and regulations at the system level. Previous research has described GRNs as coupled nonlinear systems under parametric perturbations without considering the important aspect of stochasticity. However, a realistic model of a GRN is that of a hybrid stochastic retarded system that rep...

متن کامل

Analysis of Regulatory and Epigenetic Stochasticity in Development and Disease

A workshop related to the analysis of stochasticity in epigenetics was held at IPAM on March 1-3, 2017. Experts in the application of novel analytical and experimental tools gathered to explore recent advances and barriers to progress related to the mathematical understanding of the relatively new biological field of epigenetics. The workshop served as a forum for scientists and engineers with ...

متن کامل

The Effect of Stochasticity on the Lac Operon: An Evolutionary Perspective

The role of stochasticity on gene expression is widely discussed. Both potential advantages and disadvantages have been revealed. In some systems, noise in gene expression has been quantified, in among others the lac operon of Escherichia coli. Whether stochastic gene expression in this system is detrimental or beneficial for the cells is, however, still unclear. We are interested in the effect...

متن کامل

Modelling Gene Expression Data using Dynamic Bayesian Networks

Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of Weaver et al. [WWS99] — are all special cases of a general class of models called Dynamic Bayesi...

متن کامل

Modeling stochasticity and robustness in gene regulatory networks

MOTIVATION Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008